## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2023
16/17/18UPH2MCO1 - MECHANICS

Date: 10-05-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

|  | PART - A (10 x $2=20$ Marks) |
| :---: | :---: |
| Q. No. | Answer ALL questions |
| 1 | What is a field? |
| 2 | State Newton's first law of motion. |
| 3 | Define gravitational potential. |
| 4 | State the law of conservation of energy. |
| 5 | Define torque. |
| 6 | State the perpendicular axes theorem in moment of inertia. |
| 7 | How do you produce simple harmonic motion? |
| 8 | What is the dimension of damping coefficient? |
| 9 | Define the term 'frame of reference' |
| 10 | What are the postulates of special theory of relativity? |
|  | PART - B ( $4 \times 7.5$ = 30 Marks) |
| Answer any FOUR questions |  |
| 11 | Discuss the problem of Atwood's machine and obtain the expressions for acceleration of the masses and the tension in the string. |
| 12 | Discuss about the force of friction and explain how to determine the coefficient of static friction between two surfaces using inclined plane. |
| 13 | Determine the moment of inertia of a plane lamina of length 1 , breadth $b$ and mas $m$ about an axis passing through its center and perpendicular to its plane. |
| 14 | Set up and solve the equation of motion of a compound pendulum and determine its period of oscillation. |
| 15 | What is meant by relativistic length contraction and time dilation? |
| 16 | Define velocity of escape and deduce the formula to calculate it. |
|  | PART - C ( $4 \times 12.5$ = 50 Marks) |
| Answer any FOUR questions |  |
| 17 | Discuss the motion of a charged particle in a crossed electric \& magnetic field. From this, obtain the principle of a velocity selector. |
| 18 | a) Set up and solve the equation of motion of a particle of mass $m$ projected from point ( $\mathrm{x}_{0}, \mathrm{y}_{0}$ ) with an initial velocity $\mathrm{v}_{0}$ at an angle $\theta$ to the horizontal. <br> b) Calculate the coordinates of a particle projected from the origin with an initial velocity of 25 $\mathrm{m} / \mathrm{s}$ at an angle $45^{\circ}$ to the horizontal. Determine the maximum height attained by the particle and its range. |

Discuss the problem of the scattering of a proton by a heavy nucleus applying conservation of angular momentum. From this indicate how the distance of closest approach can be measured.

| 20 | a) Consider a cylinder of mass M and radius R rolling down an inclined plane making an angle $\theta$ <br> with the horizontal, without slipping. Calculate the acceleration of its center of mass. <br> b) Set up and solve the equation of motion of an LC circuit with inductance L and capacitance C. |
| :--- | :--- |
| 21 | Obtain Lorentz transformation equations. What are their inverse transformations? |
| 22 | Describe Michelson-Morley experiment and discuss the implications of the negative result. |

\$\$\$\$\$\$

